Problem 1

Draw rough sketches of the solution to the IBVP (3.6) for different values of time. Do your sketches satisfy the BCs? What is the steady-state temperature of the rod? Is this obvious based on your intuition?

Solution

The IBVP in equation (3.6) is

$$
\begin{array}{cl}
\mathrm{PDE} & u_{t}=\alpha^{2} u_{x x} \quad 0<x<200 \quad 0<t<\infty \\
\mathrm{BCs} & \left\{\begin{array}{l}
u_{x}(0, t)=0 \\
u_{x}(200, t)=-\frac{h}{k}[u(200, t)-20]
\end{array} \quad 0<t<\infty .\right. \\
\mathrm{IC} & u(x, 0)=0^{\circ} \mathrm{C} \quad 0 \leq x \leq 200
\end{array}
$$

To solve this IBVP, take advantage of the fact that the PDE and its associated conditions are linear. Assume that the temperature has a steady component and an unsteady component.

$$
u(x, t)=v(x)+w(x, t)
$$

Plug this into the PDE

$$
\frac{\partial}{\partial t}[v(x)+w(x, t)]=\alpha^{2} \frac{\partial^{2}}{\partial x^{2}}[v(x)+w(x, t)] \quad \rightarrow \quad w_{t}=\alpha^{2}\left[v^{\prime \prime}(x)+w_{x x}\right]
$$

and each of the conditions.

$$
\begin{array}{ll}
u_{x}(0, t)=0 & \rightarrow v^{\prime}(0)+w_{x}(0, t)=0 \\
u_{x}(200, t)=-\frac{h}{k}[u(200, t)-20] & \rightarrow v^{\prime}(200)+w_{x}(200, t)=-\frac{h}{k}[v(200)+w(200, t)-20] \\
u(x, 0)=0 & \rightarrow v(x)+w(x, 0)=0
\end{array}
$$

To make the PDE and boundary conditions homogeneous for $w(x, t)$, let $v^{\prime \prime}(x)=0$ and $v^{\prime}(0)=0$ and $v^{\prime}(200)=-(h / k)[v(200)-20]$. Then the IBVP for $w(x, t)$ is

$$
\begin{aligned}
& w_{t}=\alpha^{2} w_{x x} \\
& w_{x}(0, t)=0 \\
& w_{x}(200, t)=-\frac{h}{k} w(200, t) \\
& w(x, 0)=-v(x) .
\end{aligned}
$$

Start by solving the ODE for v. The general solution for $v^{\prime \prime}(x)=0$ is

$$
v(x)=C_{1} x+C_{2} .
$$

Take the derivative with respect to x.

$$
v^{\prime}(x)=C_{1}
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
v^{\prime}(0) & =C_{1}=0 \\
v^{\prime}(200) & =C_{1}
\end{aligned}=-\frac{h}{k}\left[C_{1}(200)+C_{2}-20\right]=-\frac{h}{k}[v(200)-20] ~ \$ ~ \$
$$

Solve this system of equations.

$$
C_{1}=0 \quad C_{2}=20
$$

The steady-state temperature is therefore

$$
v(x)=20 .
$$

Using the method of separation of variables, the solution to the IBVP,

$$
\begin{aligned}
& w_{t}=\alpha^{2} w_{x x} \\
& w_{x}(0, t)=0 \\
& w_{x}(200, t)=-\frac{h}{k} w(200, t) \\
& w(x, 0)=-20
\end{aligned}
$$

is found to be

$$
w(x, t)=-\sum_{n=1}^{\infty} \frac{80 \sin \left(200 \gamma_{n}\right)}{400 \gamma_{n}+\sin \left(400 \gamma_{n}\right)} e^{-\alpha^{2} \gamma_{n}^{2} t} \cos \left(\gamma_{n} x\right),
$$

where γ_{n} is the nth solution to the transcendental equation,

$$
\tan \left(200 \gamma_{n}\right)=\frac{h}{k \gamma_{n}} .
$$

Therefore, since $u(x, t)=v(x)+w(x, t)$,

$$
u(x, t)=20-80 \sum_{n=1}^{\infty} \frac{\sin \left(200 \gamma_{n}\right)}{400 \gamma_{n}+\sin \left(400 \gamma_{n}\right)} e^{-\alpha^{2} \gamma_{n}^{2} t} \cos \left(\gamma_{n} x\right) .
$$

Plot this function versus x at several times to illustrate the behavior of this solution.

All curves have a slope of zero at $x=0$, representing the thermally insulated boundary. Also, the temperature throughout the rod increases due to the ambient fluid temperature of $20^{\circ} \mathrm{C}$ at $x=200$. At $t=0$ the temperature in the rod is uniformly zero, and in the steady state, after a long time has passed, the temperature in the rod is uniformly $20^{\circ} \mathrm{C}$, the same as the ambient temperature.

